skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Le_Goues, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 24, 2026
  2. To keep up with changes in requirements, frameworks, and coding practices, software organizations might need to migrate code from one language to another. Source-to-source migration, or transpilation, is often a complex, manual process. Transpilation requires expertise both in the source and target language, making it highly laborious and costly. Languages models for code generation and transpilation are becoming increasingly popular. However, despite capturing code-structure well, code generated by language models is often spurious and contains subtle problems. We proposeBatFix, a novel approach that augments language models for transpilation by leveraging program repair and synthesis to fix the code generated by these models.BatFixtakes as input both the original program, the target program generated by the machine translation model, and a set of test cases and outputs a repaired program that passes all test cases. Experimental results show that our approach is agnostic to language models and programming languages.BatFixcan locate bugs spawning multiple lines and synthesize patches for syntax and semantic bugs for programs migrated fromJavatoC++andPythontoC++from multiple language models, including, OpenAI’sCodex. 
    more » « less
  3. While mutation testing has been a topic of academic interest for decades, it is only recently that “real-world” developers, including industry leaders such as Google and Meta, have adopted mutation testing. We propose a new approach to the development of mutation testing tools, and in particular the core challenge ofgenerating mutants. Current practice tends towards two limited approaches to mutation generation: mutants are either (1) generated at the bytecode/IR level, and thus neither human readable nor adaptable to source-level features of languages or projects, or (2) generated at the source level by language-specific tools that are hard to write and maintain, and in fact are often abandoned by both developers and users. We propose instead that source-level mutation generation is a special case ofprogram transformationin general, and that adopting this approach allows for a single tool that can effectively generate source-level mutants for essentiallyanyprogramming language. Furthermore, by usingparser parser combinatorsmany of the seeming limitations of an any-language approach can be overcome, without the need to parse specific languages. We compare this new approach to mutation to existing tools, and demonstrate the advantages of using parser parser combinators to improve on a regular-expression based approach to generation. Finally, we show that our approach can provide effective mutant generation even for a language for which it lacks any language-specific operators, and that is not very similar in syntax to any language it has been applied to previously. 
    more » « less
  4. Industrial deployments of automated program repair (APR), e.g., at Facebook and Bloomberg, signal a new milestone for this exciting and potentially impactful technology. In these deployments, developers use APR-generated patch suggestions as part of a human-driven debugging process. Unfortunately, little is known about how using patch suggestions affects developers during debugging. This paper conducts a controlled user study with 40 developers with a median of 6 years of experience. The developers engage in debugging tasks on nine naturally-occurring defects in real-world, open-source, Java projects, using Recoder, SimFix, and TBar, three state-of-the-art APR tools. For each debugging task, the developers either have access to the project's tests, or, also, to code suggestions that make all the tests pass. These suggestions are either developer-written or APR-generated, which can be correct or deceptive. Deceptive suggestions, which are a common APR occurrence, make all the available tests pass but fail to generalize to the intended specification. Through a total of 160 debugging sessions, we find that access to a code suggestion significantly increases the odds of submitting a patch. Correct APR suggestions increase the odds of debugging success by 14,000%, but deceptive suggestions decrease the odds of success by 65%. Correct suggestions also speed up debugging. Surprisingly, we observe no significant difference in how novice and experienced developers are affected by APR, suggesting that APR may find uses across the experience spectrum. Overall, developers come away with a strong positive impression of APR, suggesting promise for APR-mediated, human-driven debugging, despite existing challenges in APR-generated repair quality. 
    more » « less
  5. The Linux Kernel is a world-class operating system controlling most of our computing infrastructure: mobile devices, Internet routers and services, and most of the supercomputers. Linux is also an example of low-level software with no comprehensive regression test suite (for good reasons). The kernel’s tremendous societal importance imposes strict stability and correctness requirements. These properties make Linux a challenging and relevant target for static automated program repair (APR). Over the past decade, a significant progress has been made in dynamic APR. However, dynamic APR techniques do not translate naturally to systems without tests. We present a static APR technique addressing sequentiallocking API misusebugs in the Linux Kernel. We attack the key challenge of static APR, namely, the lack of detailed program specification, by combining static analysis with machine learning to complement the information presented by the static analyzer. In experiments on historical real-world bugs in the kernel, we were able to automatically re-produce or propose equivalent patches in 85% of the human-made patches, and automatically rank them among the top three candidates for 64% of the cases and among the top five for 74%. 
    more » « less